

ANANDALAYA PERIODIC TEST – 1

Class : XII

M.M: 40 : 3Hours

	Date : 17/07/2019	Fime:
	General Instructions:	
	1. All questions are compulsory.	
	2. Section A: Q.no. 1 to 10 are very short answer questions and carry 1 mark each.	
	3. Section B: Q.no. 11-14 are short answer questions and carry 2 marks each.	
	4. Section C: Q.no. 15 to 18 are also short answer questions and carry 3 marks each.	
	5. Section D: Q.no. 19 and 20 are long answer questions and carry 5 marks each.	
	6. Use log tables if necessary, use of calculators is not allowed.	
	SECTION A	
1.	N ₂ and O ₂ gases have K _H values 76.48 K bar and 34.86 K bar respectively at 293 K temperat	ure.
	Which of these will have more solubility in water?	
2.	What is the value of Van't Hoff factor (i) for $Na_2SO_4 \cdot 10H_2O$?	
2	A aNO an reaction with NaCl in access colution gives white presinitate. If the two colution	

 $AgNO_3$ on reaction with NaCl in aqueous solution gives white precipitate. If the two solutions are (1)3. separated by a semi-permeable membrane will there be appearance of a white ppt. in the side 'X' due to osmosis?

0.1 M	S	0.01 M
AgNO₃	Р	NaCl
X	М	Y

- State one difference between a primary battery and secondary battery. 4.
- Two metals A and B have reduction potential values of -0.25V and 0.80V respectively. Which of 5. (1)these will liberate hydrogen gas from dilute H₂SO₄?
- 6. Does a large positive electrode potential indicate a strong oxidizing agent or a strong reducing (1)agent? What about a large negative electrode potential
- 7. Express the rate of reaction in terms of Br- (aq) as reactant and Br₂ (aq) as product for the reaction :

$$5 \operatorname{Br}(aq) + \operatorname{BrO}_3(aq) + 6\operatorname{H}^+(aq) \to 3 \operatorname{Br}_2(aq) + 3\operatorname{H}_2O(l)$$

- 8. For a chemical reaction A B. The rate of the reaction is given as Rate = k [A]n. The rate of the above (1)reaction quadruples when the concentration of A is doubled. What is the value of n?
- The rate constant of a reaction is given by the expression $k = A e^{-Ea/RT}$. Which factor in this expression 9. (1)should register a decrease so that the reaction proceeds rapidly?
- KI Solution 10. What will be the charge on colloidal solutions in the following cases. KI Solution Ag NO₃ Solution

SECTION B

Benzene and toluene form a nearly ideal solution. At a certain temperature, calculate the vapour 11. (2)pressure of solution containing equal moles of the two substances. [Given : $P^{\circ}Benzene = 150 \text{ mm of Hg}$, $P^{\circ}Toluene = 55 \text{ mm of Hg}$]

(1)

(1)

(1)

(1)

(1)

12.	When 1 mole of NaCl is added to 1 litre water the boiling point increases. When 1 mole of CH_3OH is added to 1 litre water, the boiling point decreases. Suggest reason.	(2)
13.	A small amount of silica gel and a small amount of anhydrous calcium chloride are placed separately in two beakers containing water vapour. Name of phenomenon that takes place in both the beakers.	(2)
14.	Suggest a mechanism of enzyme catalyzed reaction along with the diagram.	(2)
	SECTION C	
15.	An aqueous solution containing 3.12 g of barium chloride in 250 g of water is found to be boil at 100.0832°C. Calculate the degree of dissociation of barium chloride. [Given molar mass $BaCl_2 = 208$ g mol-1, Kb for water = 0.52 K/m]	(3)
16.	Give reasons for :	(3)
10.	a) For a weak electrolyte, its molar conductivity of dilute solution increases sharply as the concentration of solution is decreased.	(0)
	 b) Molar conductivity of a strong electrolyte like KCl decrease slightly while increasing concentration? c) It is not easy to determine λ°m of a weak electrolyte by extrapolation of c vs λm curves? 	
17.	Distinguish between multimolecular, macromolecular and associated colloids with the help of one example of each.	(3)
18.	A certain reaction is 50% complete in 20 min at 300K and the same reaction is again 50% complete in 5 min at 350K. Calculate the activation energy if it is a first order reaction. $(R = 8.314J \text{ K}-1 \text{ mol}-1, \log 4 = 0.602)$	(3)
	OR	

The decomposition of N_2O_5 at 320K according to the following equation follows first order reaction: $N_2O_5(g) \rightarrow 2NO_2(g) + 1/2 O_2(g)$ The initial concentration of N_2O_5 was 1.24×10^{-2} mol L⁻¹ and that after 60 minutes was 0.20×10^{-2} mol L-1. Calculate the rate constant of the reaction at 320K.

SECTION D

- a) Current of 1.50 A was passed through cell containing AgNO₃ solution with inert electrodes. (5) The weight of Ag deposited was 1.50 g. how long did the current flow.
 - b) Write the reactions taking place at the anode and cathode in the above cell if inert electrodes are used.
 - c) Give reactions taking place at the two electrodes if these are made of Ag.
- 20. a) Derive the equation for rate constant of a first order reaction. What would be the units of the first (5) order rate constant if the concentration is expressed in moles per litre and time in second?
 - b) For first order chemical reaction half-life period $(t_{1/2})$ is concentration independent. Justify the statement by using integrated rate equation.

OR

- a) State Kohlrausch law of independent migration of ions. Write an expression for the molar conductivity of acetic acid at infinite dilution according to Kohlrausch's law.
- b) A voltaic cell is set up at 25°C with the following half cells Al³⁺ (0.001 M) and Ni²⁺ (0.50 M).Write an equation for the reaction that occurs when the cell generate an electric current and also determine the cell potential.

[Given;
$$E_{NI}^{\circ}^{2+}$$
/Ni = - 0.25 V, $E_{AI}^{\circ}^{3+}$ /AI = -1.66 V]